FUEL CYCLE I: FUEL FABRICATION (WEST MADRONE)

FABRICATION OF HIGH DENSITY POROUS PELLETS FOR HIGH THERMAL CONDUCTIVITY OXIDE FUELS

Huthavahana Sarma Kuchibhotla, Dr. Alvin A. Solomon
School of Nuclear Engineering, Purdue University
West Lafayette, IN – 47907 – 1290.
sarma@purdue.edu

Despite the several beneficial properties of oxide fuels currently in commercial usage, they suffer from the fact that their thermal conductivity is very low, which imposes a severe constraint on their operating temperatures and thus curtails their efficiency. In order to counter this a novel approach of penetrating the porous Uranium oxide fuel pellets with a secondary, high thermal conductivity phase, through the use of organo-metallic precursors, a technique that was developed to deal with Ceramic Matrix Composites. Challenges to be surmounted involved, the selection of suitable high conductivity material and a related organic precursor. β-SiC was chosen as the high conductivity phase in lieu of its excellent thermal properties and AllylHydrido PolyCarboSilane (AHPCS) was chosen as the precursor. The issue of compatibility between the fuel and the secondary phase has also been addressed.

The success of the above technique is solely dependent upon the successful fabrication of porous high-density oxide fuel pellets. Fabrication of 85-90% dense pellets with approximately 10-12% open porosity was chosen as our preliminary goal. Various techniques to fabricate the same have been tried. Pellets meeting the above requirements were successfully fabricated through a technique called the ‘Double Compaction’ technique. Pellets produced by the above technique have been tested to determine their pore size distribution and average pore size, using a Hg - intrusion porosimeter.

3D SIMULATION OF MANUFACTURING PROCESSES FOR TRANSMUTER FUEL FABRICATION

Richard A. Silva
University of Nevada, Las Vegas

The elimination of certain radionuclides from commercial spent nuclear fuel (CSNF) intended for disposal at the proposed mined geologic repository for high-level nuclear wastes, Yucca Mountain, would have significant advantages toward the long-term performance of the site. Of the overall volume of waste intended for Yucca Mountain, only approximately one percent of the CNSF contains long-lived fission products, which have a direct effect on the long-term performance of the repository.

A proposed method of converting these long-lived radionuclides into shorter-lived radionuclides is known as transmutation. These hazardous elements can be separated and transmuted in power-producing reactors and accelerator-driven systems. Transmutation cannot replace the current need for a national repository, but a successful transmutation program will significantly reduce the requirement and burden of disposal of nuclear wastes. As a result, transmutation could remove the waste management issue as a barrier to expanded use of nuclear power to address environmental and economic issues faced by the United States and the world.

As part of the overall viability of transmutation, the process of manufacturing individual fuel elements must be studied and optimized, not only for production rates and throughput but also for safety. Due to the high radiation level and generally high throughput rates required, automated fuel manufacturing must be employed. Albeit in early conceptual form, this paper will present the automated process steps required to receive sintered transmuter fuel pellets and assemble them into fuel assemblies for transmutation.